Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### 4-Formylphenyl 2,3,4,6-tetra-O-acetyl- $\beta$ -D-allopyranoside

#### Ding Ye, Kuan Zhang, Hua-feng Chen, Shu-fan Yin and Ying Li\*

College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China

Correspondence e-mail: chuandayouji217@163.com

Received 19 March 2009; accepted 14 May 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.050; wR factor = 0.143; data-to-parameter ratio = 14.2.

The title compound, C<sub>21</sub>H<sub>24</sub>O<sub>11</sub>, crystallizes exclusively as the  $\beta$ -anomer. The substituent of the protected sugar at position C-3 is in the axial position, while all other groups are in equatorial positions. The pyranoside ring adopts a stable chair conformation.

#### **Related literature**

For the synthesis see: Chen et al. (1981); Wen et al. (2008). For the pharmacological activities of helicid derivatives, see: Fan et al. (2008), Sha et al. (1987). For related structures, see: Burkhardt et al. (2007a, 2007b)



#### **Experimental**

#### Crystal data

| $C_{21}H_{24}O_{11}$           | V = 1115.4             |
|--------------------------------|------------------------|
| $M_r = 452.40$                 | Z = 2                  |
| Monoclinic, P2 <sub>1</sub>    | Mo Kα rad              |
| a = 7.056 (4)  Å               | $\mu = 0.11 \text{ m}$ |
| b = 17.758 (6) Å               | T = 291  K             |
| c = 9.129 (3) Å                | $0.44 \times 0.42$     |
| $\beta = 102.80 \ (4)^{\circ}$ |                        |
|                                |                        |

#### Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 4596 measured reflections 4149 independent reflections

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.050$ |
|---------------------------------|
| $wR(F^2) = 0.143$               |
| S = 0.95                        |
| 4149 reflections                |
| 293 parameters                  |

(8)  $Å^3$ iation  $m^{-1}$  $\times$  0.20 mm

2143 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.029$ 3 standard reflections every 150 reflections intensity decay: 3.7%

1 restraint H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{\rm min} = -0.20$  e Å<sup>-3</sup>

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank Mr Zhi-Hua Mao of Sichuan University for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2200).

#### References

- Burkhardt, A., Buchholz, A., Görls, H. & Plass, W. (2007a). Acta Cryst. E63, 0387-0388.
- Burkhardt, A., Buchholz, A., Görls, H. & Plass, W. (2007b). Acta Cryst. E63, 0384-0386
- Chen, W. S., Lu, S. D. & Eberhard, B. (1981). Liebigs Ann. Chem. 10, 1893-1895.

Fan, B., Li, J. L., Li, Y. & Yin, S. F. (2008). Chin. J. Org. Chem. 27, 1150-1154. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh meeting. Abstract PA 104.

Sha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull. 22, 27-30.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wen, H., Lin, C., Que, L., Ge, H., Ma, L., Cao, R., Wan, Y. Q., Peng, W. L., Wang, Z. H. & Song, H. C. (2008). Eur. J. Med. Chem. 43, 166-173.

Acta Cryst. (2009). E65, o1338 [doi:10.1107/S1600536809018248]

### 4-Formylphenyl 2,3,4,6-tetra-*O*-acetyl-β-D-allopyranoside

#### D. Ye, K. Zhang, H. Chen, S. Yin and Y. Li

#### Comment

The natural compound helicid, 4-( $\beta$ -D-allopyranosyloxy)benzaldehyde (Chen *et al.*, 1981), is a major active ingredient of Chinese herbal medicine, which has good biological effects on central nervous system with low toxicity (Sha *et al.*, 1987). Some helicid derivatives have been reported with good pharmacological activities (Fan *et al.*, 2008). The title compound, a new helicid derivative, was synthesized *via* reaction of helicid and acetyl anhydride with good yield of 98% (Wen *et al.*, 2008). Herein, we describe the structure of 4-formylphenyl-2,3, 4,6-tetra-*O*-acetyl- $\beta$ -D-allopyranoside which compare well with the related structures 3-Formylphenyl-2,3,4,6-tetra-*O*-acetyl- $\beta$ -D- glucopyranoside (Burkhardt *et al.*, 2007a) and 3-Formylphenyl-2,3,4,6-tetra-*O*-acetyl- $\alpha$ -D- glucopyranoside (Burkhardt *et al.*, 2007b). The 4-formylphenyl group is subsitued at anomeric atom C1. The remaining hydroxy groups at C2, C3, C4 and C6 are protected by acetyl groups. Due to its hydrophobic substituents the compound is soluble in less polar solvents such as CH<sub>2</sub>Cl<sub>2</sub>. The 4-formylphenyl substituent at C1 is in an equatorial position, corresponding to the exclusive presence of the  $\beta$  anomer of the saccharide. The substituent of the protected sugar at C3 is in the axial position.

#### Experimental

To a solution of helicid (1.0 g, 3.5 mmol) in 2 ml of DMF and 3 ml of TEA was added dropwise acetyl anhydride (2.5 g, 25 mmol) under ice bath. The mixture was stirred vigorously at room temperature 5 h, and then poured into 20 ml of ice water. The precipitate was filtered, washed with water, and recrystallized with ethanol. By slow evaporation at room temperature, we got colorless crystals, yield 98%, m.p.:408–409 K. IR (KBr): 1752, 1693, 1601, 1506, 1224, 1157, 1127, 1085, 914, 876; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K): 2.18, 2.08, 2.05, 2.05 (4 s, 12H, CH3); 4.26–4.24 (m, 2H, H6a, H6e); 4.32–4.27 (m, 1H, H5); 5.16 (dd, 1H, J<sub>43</sub> = 2.8 Hz, J<sub>45</sub> = 9.9 Hz, H4); 5.19 (dd, 1H, J<sub>23</sub> = 3.0 Hz, J<sub>21</sub> = 8.1 Hz, H2); 5.48 (d, 1H, J<sub>12</sub> = 8.1 Hz, H1); 5.75 (t, 1H, J<sub>32</sub> = 2.9 Hz, H3); 7.85 (d, 2H, J<sub>89</sub> = J<sub>1211</sub> = 8.6 Hz, ArH); 7.13 (d, 2H, J<sub>910</sub> = J<sub>1110</sub> = 8.6 Hz, ArH); 9.91 (s, 1H, H—C=O) p.p.m. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, 298 K): 191.2, 170.8, 170.6, 170.5, 169.8, 161.7, 132.3, 117.2, 99.0, 71.8, 71.1, 68.8, 67.2, 61.8, 21.2, 21.1,21.0 p.p.m. ESI-MS: m/z (%) = 475 [M + Naf<sup>+</sup> (100). Analysis calculated for C<sub>21</sub>H<sub>24</sub>O<sub>11</sub>.

#### Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with  $U_{iso}(H) = 1.2U_{eq}$  (methylene C, aromatic C),  $U_{iso}(H) = 1.5U_{eq}$  (methyl C).

Figures



Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

### 4-Formylphenyl 2,3,4,6-tetra-O-acetyl-β-D-allopyranoside

| Crystal data                                    |                                                 |
|-------------------------------------------------|-------------------------------------------------|
| C <sub>21</sub> H <sub>24</sub> O <sub>11</sub> | $F_{000} = 476$                                 |
| $M_r = 452.40$                                  | $D_{\rm x} = 1.347 \ {\rm Mg \ m}^{-3}$         |
| Monoclinic, P2 <sub>1</sub>                     | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: P 2yb                              | Cell parameters from 33 reflections             |
| a = 7.056 (4) Å                                 | $\theta = 4.6 - 9.4^{\circ}$                    |
| <i>b</i> = 17.758 (6) Å                         | $\mu = 0.11 \text{ mm}^{-1}$                    |
| c = 9.129 (3) Å                                 | <i>T</i> = 291 K                                |
| $\beta = 102.80 \ (4)^{\circ}$                  | Block, colourless                               |
| $V = 1115.4 (8) \text{ Å}^3$                    | $0.44\times0.42\times0.20\ mm$                  |
| Z = 2                                           |                                                 |

#### Data collection

| Enraf–Nonius CAD-4<br>diffractometer     | $R_{\text{int}} = 0.029$             |
|------------------------------------------|--------------------------------------|
| Radiation source: fine-focus sealed tube | $\theta_{\text{max}} = 32.5^{\circ}$ |
| Monochromator: graphite                  | $\theta_{\min} = 2.3^{\circ}$        |
| T = 291  K                               | $h = -10 \rightarrow 10$             |
| $\omega/2\theta$ scans                   | $k = -25 \rightarrow 26$             |
| Absorption correction: none              | $l = -13 \rightarrow 13$             |
| 4596 measured reflections                | 3 standard reflections               |
| 4149 independent reflections             | every 150 reflections                |
| 2143 reflections with $I > 2\sigma(I)$   | intensity decay: 3.7%                |

#### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                      |
|---------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                  |
| $R[F^2 > 2\sigma(F^2)] = 0.050$ | H-atom parameters constrained                                             |
| $wR(F^2) = 0.143$               | $w = 1/[\sigma^2(F_o^2) + (0.0778P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 0.95                 | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |

4149 reflections293 parameters

 $\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$ 

1 restraint

Extinction correction: none

Primary atom site location: structure-invariant direct methods

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x           | У            | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|--------------|-------------|---------------------------|
| 01  | 0.4950 (3)  | 0.63276 (10) | 0.1617 (2)  | 0.0399 (4)                |
| O2  | 0.2064 (3)  | 0.55171 (14) | -0.0604 (2) | 0.0526 (5)                |
| O3  | 0.3692 (5)  | 0.62506 (18) | -0.1903 (3) | 0.0857 (9)                |
| O4  | 0.2271 (3)  | 0.48018 (11) | 0.2871 (2)  | 0.0436 (4)                |
| O5  | -0.0540 (3) | 0.52455 (15) | 0.3289 (4)  | 0.0733 (8)                |
| O6  | 0.5256 (3)  | 0.54679 (12) | 0.5011 (2)  | 0.0446 (4)                |
| 07  | 0.3283 (4)  | 0.48347 (14) | 0.6212 (3)  | 0.0657 (7)                |
| 08  | 0.5465 (3)  | 0.69998 (12) | 0.5428 (2)  | 0.0468 (5)                |
| 09  | 0.2909 (5)  | 0.7687 (2)   | 0.5597 (4)  | 0.1025 (12)               |
| O10 | 0.6171 (3)  | 0.74339 (10) | 0.2628 (2)  | 0.0415 (4)                |
| 011 | 1.2834 (4)  | 0.88786 (18) | -0.0222 (3) | 0.0780 (8)                |
| C1  | 0.5854 (4)  | 0.66770 (14) | 0.2979 (3)  | 0.0370 (5)                |
| H1  | 0.7070      | 0.6424       | 0.3454      | 0.044*                    |
| C2  | 0.4428 (4)  | 0.67009 (15) | 0.4018 (3)  | 0.0385 (6)                |
| H2  | 0.3343      | 0.7036       | 0.3589      | 0.046*                    |
| C3  | 0.3648 (4)  | 0.59176 (16) | 0.4229 (3)  | 0.0394 (6)                |
| H3  | 0.2627      | 0.5944       | 0.4801      | 0.047*                    |
| C4  | 0.2873 (4)  | 0.55657 (15) | 0.2697 (3)  | 0.0388 (6)                |
| H4  | 0.1757      | 0.5858       | 0.2156      | 0.047*                    |
| C5  | 0.4441 (4)  | 0.55511 (15) | 0.1781 (3)  | 0.0382 (6)                |
| Н5  | 0.5581      | 0.5283       | 0.2352      | 0.046*                    |
| C6  | 0.3858 (4)  | 0.52131 (17) | 0.0245 (3)  | 0.0482 (7)                |
| H6A | 0.4876      | 0.5304       | -0.0293     | 0.058*                    |
| H6B | 0.3723      | 0.4673       | 0.0338      | 0.058*                    |
| C7  | 0.2171 (6)  | 0.6017 (2)   | -0.1706 (4) | 0.0620 (9)                |
| C8  | 0.0234 (7)  | 0.6216 (3)   | -0.2607 (5) | 0.0897 (13)               |
| H8A | 0.0274      | 0.6713       | -0.3014     | 0.135*                    |
|     |             |              |             |                           |

| H8B  | -0.0694    | 0.6204       | -0.1981    | 0.135*      |
|------|------------|--------------|------------|-------------|
| H8C  | -0.0141    | 0.5862       | -0.3412    | 0.135*      |
| С9   | 0.0503 (4) | 0.47285 (19) | 0.3242 (4) | 0.0528 (8)  |
| C10  | 0.0162 (6) | 0.3927 (2)   | 0.3635 (5) | 0.0743 (11) |
| H10A | 0.0886     | 0.3821       | 0.4634     | 0.111*      |
| H10B | 0.0578     | 0.3596       | 0.2937     | 0.111*      |
| H10C | -0.1198    | 0.3851       | 0.3586     | 0.111*      |
| C11  | 0.4840 (5) | 0.49291 (18) | 0.5944 (3) | 0.0535 (8)  |
| C12  | 0.6629 (7) | 0.4484 (3)   | 0.6583 (6) | 0.0856 (13) |
| H12A | 0.7167     | 0.4648       | 0.7591     | 0.128*      |
| H12B | 0.7566     | 0.4557       | 0.5978     | 0.128*      |
| H12C | 0.6303     | 0.3959       | 0.6590     | 0.128*      |
| C13  | 0.4540 (5) | 0.75101 (18) | 0.6110 (4) | 0.0563 (8)  |
| C14  | 0.5769 (7) | 0.7780 (3)   | 0.7549 (5) | 0.0842 (13) |
| H14A | 0.5345     | 0.8273       | 0.7771     | 0.126*      |
| H14B | 0.7100     | 0.7804       | 0.7465     | 0.126*      |
| H14C | 0.5656     | 0.7439       | 0.8341     | 0.126*      |
| C15  | 0.7685 (4) | 0.75945 (14) | 0.1960 (3) | 0.0359 (5)  |
| C16  | 0.8011 (4) | 0.83541 (16) | 0.1761 (3) | 0.0430 (6)  |
| H16  | 0.7223     | 0.8714       | 0.2069     | 0.052*      |
| C17  | 0.9503 (4) | 0.85760 (16) | 0.1108 (3) | 0.0453 (7)  |
| H17  | 0.9704     | 0.9085       | 0.0961     | 0.054*      |
| C18  | 1.0703 (4) | 0.80472 (17) | 0.0669 (3) | 0.0417 (6)  |
| C19  | 1.0361 (4) | 0.72875 (17) | 0.0863 (3) | 0.0460 (7)  |
| H19  | 1.1167     | 0.6930       | 0.0568     | 0.055*      |
| C20  | 0.8838 (4) | 0.70516 (16) | 0.1487 (3) | 0.0443 (6)  |
| H20  | 0.8594     | 0.6542       | 0.1587     | 0.053*      |
| C21  | 1.2373 (5) | 0.8255 (2)   | 0.0018 (4) | 0.0587 (8)  |
| H21  | 1.3126     | 0.7864       | -0.0224    | 0.070*      |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-----------------|-----------------|--------------|-------------|--------------|
| 01  | 0.0456 (10) | 0.0342 (9)      | 0.0435 (10)     | -0.0048 (8)  | 0.0178 (8)  | 0.0015 (8)   |
| O2  | 0.0535 (12) | 0.0559 (12)     | 0.0508 (11)     | -0.0077 (10) | 0.0171 (10) | -0.0018 (10) |
| O3  | 0.101 (2)   | 0.085 (2)       | 0.0768 (18)     | -0.0286 (18) | 0.0309 (15) | 0.0115 (15)  |
| O4  | 0.0422 (10) | 0.0337 (10)     | 0.0598 (11)     | -0.0029 (8)  | 0.0218 (9)  | 0.0005 (9)   |
| O5  | 0.0492 (13) | 0.0593 (16)     | 0.121 (2)       | 0.0022 (12)  | 0.0392 (14) | 0.0042 (15)  |
| O6  | 0.0462 (11) | 0.0442 (10)     | 0.0462 (10)     | 0.0045 (9)   | 0.0162 (8)  | 0.0099 (8)   |
| O7  | 0.0768 (17) | 0.0592 (15)     | 0.0691 (15)     | -0.0078 (13) | 0.0330 (13) | 0.0151 (13)  |
| O8  | 0.0454 (11) | 0.0481 (11)     | 0.0502 (11)     | -0.0016 (9)  | 0.0177 (9)  | -0.0086 (9)  |
| O9  | 0.102 (2)   | 0.109 (3)       | 0.097 (2)       | 0.049 (2)    | 0.0209 (18) | -0.0315 (19) |
| O10 | 0.0459 (10) | 0.0294 (9)      | 0.0559 (11)     | 0.0004 (8)   | 0.0257 (9)  | 0.0009 (8)   |
| 011 | 0.0760 (18) | 0.0810 (19)     | 0.0855 (19)     | -0.0344 (15) | 0.0361 (15) | -0.0012 (15) |
| C1  | 0.0399 (13) | 0.0320 (12)     | 0.0432 (13)     | -0.0019 (10) | 0.0176 (11) | 0.0001 (11)  |
| C2  | 0.0402 (14) | 0.0360 (13)     | 0.0427 (13)     | 0.0008 (11)  | 0.0167 (11) | -0.0013 (11) |
| C3  | 0.0367 (13) | 0.0387 (13)     | 0.0478 (14)     | 0.0010 (11)  | 0.0197 (11) | 0.0035 (12)  |
| C4  | 0.0374 (13) | 0.0300 (12)     | 0.0521 (15)     | -0.0012 (11) | 0.0166 (11) | 0.0027 (11)  |

| 0.0399 (14) | 0.0329 (13)                                                                                                                                                                                                                                   | 0.0465 (14)                                                                                                                                                                                                                                                                                                                                                                                           | -0.0001 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0195 (11)                                          | 0.0010 (11)                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0.0526 (17) | 0.0426 (15)                                                                                                                                                                                                                                   | 0.0540 (17)                                                                                                                                                                                                                                                                                                                                                                                           | -0.0005 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0216 (14)                                          | -0.0051 (13)                                         |
| 0.086 (3)   | 0.0523 (19)                                                                                                                                                                                                                                   | 0.0521 (18)                                                                                                                                                                                                                                                                                                                                                                                           | -0.0007 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0236 (18)                                          | -0.0051 (15)                                         |
| 0.099 (3)   | 0.102 (3)                                                                                                                                                                                                                                     | 0.063 (2)                                                                                                                                                                                                                                                                                                                                                                                             | 0.017 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.006 (2)                                            | 0.004 (2)                                            |
| 0.0444 (16) | 0.0487 (18)                                                                                                                                                                                                                                   | 0.070 (2)                                                                                                                                                                                                                                                                                                                                                                                             | -0.0114 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0227 (14)                                          | -0.0075 (16)                                         |
| 0.078 (3)   | 0.049 (2)                                                                                                                                                                                                                                     | 0.105 (3)                                                                                                                                                                                                                                                                                                                                                                                             | -0.0242 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.039 (2)                                            | 0.005 (2)                                            |
| 0.068 (2)   | 0.0462 (17)                                                                                                                                                                                                                                   | 0.0481 (16)                                                                                                                                                                                                                                                                                                                                                                                           | 0.0011 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0168 (15)                                          | 0.0058 (14)                                          |
| 0.089 (3)   | 0.079 (3)                                                                                                                                                                                                                                     | 0.088 (3)                                                                                                                                                                                                                                                                                                                                                                                             | 0.020 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.018 (2)                                            | 0.032 (2)                                            |
| 0.070 (2)   | 0.0432 (17)                                                                                                                                                                                                                                   | 0.0644 (19)                                                                                                                                                                                                                                                                                                                                                                                           | 0.0026 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0339 (17)                                          | -0.0080 (15)                                         |
| 0.096 (3)   | 0.090 (3)                                                                                                                                                                                                                                     | 0.077 (2)                                                                                                                                                                                                                                                                                                                                                                                             | -0.037 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.041 (2)                                            | -0.036 (2)                                           |
| 0.0365 (13) | 0.0345 (13)                                                                                                                                                                                                                                   | 0.0379 (13)                                                                                                                                                                                                                                                                                                                                                                                           | -0.0017 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0108 (10)                                          | 0.0020 (10)                                          |
| 0.0446 (15) | 0.0302 (13)                                                                                                                                                                                                                                   | 0.0559 (17)                                                                                                                                                                                                                                                                                                                                                                                           | -0.0023 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0148 (13)                                          | -0.0053 (12)                                         |
| 0.0479 (16) | 0.0354 (14)                                                                                                                                                                                                                                   | 0.0534 (16)                                                                                                                                                                                                                                                                                                                                                                                           | -0.0104 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0132 (13)                                          | -0.0016 (12)                                         |
| 0.0395 (13) | 0.0463 (16)                                                                                                                                                                                                                                   | 0.0408 (13)                                                                                                                                                                                                                                                                                                                                                                                           | -0.0058 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0125 (11)                                          | 0.0022 (12)                                          |
| 0.0489 (16) | 0.0406 (15)                                                                                                                                                                                                                                   | 0.0530 (16)                                                                                                                                                                                                                                                                                                                                                                                           | 0.0063 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0210 (13)                                          | 0.0013 (12)                                          |
| 0.0501 (15) | 0.0312 (13)                                                                                                                                                                                                                                   | 0.0568 (16)                                                                                                                                                                                                                                                                                                                                                                                           | 0.0019 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0230 (13)                                          | 0.0011 (12)                                          |
| 0.0525 (18) | 0.070 (2)                                                                                                                                                                                                                                     | 0.0581 (18)                                                                                                                                                                                                                                                                                                                                                                                           | -0.0109 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0212 (15)                                          | 0.0046 (17)                                          |
|             | 0.0399 (14)<br>0.0526 (17)<br>0.086 (3)<br>0.099 (3)<br>0.0444 (16)<br>0.078 (3)<br>0.068 (2)<br>0.089 (3)<br>0.070 (2)<br>0.096 (3)<br>0.0365 (13)<br>0.0446 (15)<br>0.0479 (16)<br>0.0395 (13)<br>0.0489 (16)<br>0.0501 (15)<br>0.0525 (18) | 0.0399(14) $0.0329(13)$ $0.0526(17)$ $0.0426(15)$ $0.086(3)$ $0.0523(19)$ $0.099(3)$ $0.102(3)$ $0.0444(16)$ $0.0487(18)$ $0.078(3)$ $0.049(2)$ $0.068(2)$ $0.0462(17)$ $0.089(3)$ $0.079(3)$ $0.070(2)$ $0.0432(17)$ $0.096(3)$ $0.090(3)$ $0.0365(13)$ $0.0345(13)$ $0.0446(15)$ $0.0302(13)$ $0.0479(16)$ $0.0354(14)$ $0.0395(13)$ $0.0463(16)$ $0.0489(16)$ $0.0312(13)$ $0.0525(18)$ $0.070(2)$ | 0.0399(14) $0.0329(13)$ $0.0465(14)$ $0.0526(17)$ $0.0426(15)$ $0.0540(17)$ $0.086(3)$ $0.0523(19)$ $0.0521(18)$ $0.099(3)$ $0.102(3)$ $0.063(2)$ $0.0444(16)$ $0.0487(18)$ $0.070(2)$ $0.078(3)$ $0.0462(17)$ $0.0481(16)$ $0.089(3)$ $0.079(3)$ $0.088(3)$ $0.070(2)$ $0.0462(17)$ $0.0481(16)$ $0.089(3)$ $0.079(3)$ $0.088(3)$ $0.070(2)$ $0.0432(17)$ $0.0644(19)$ $0.096(3)$ $0.090(3)$ $0.077(2)$ $0.0365(13)$ $0.0345(13)$ $0.0379(13)$ $0.0446(15)$ $0.0302(13)$ $0.0559(17)$ $0.0479(16)$ $0.0354(14)$ $0.0534(16)$ $0.0395(13)$ $0.0463(16)$ $0.0408(13)$ $0.0489(16)$ $0.0406(15)$ $0.0530(16)$ $0.0525(18)$ $0.070(2)$ $0.0581(18)$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Geometric parameters (Å, °)

| 01—C1   | 1.409 (3) | C7—C8    | 1.474 (6) |
|---------|-----------|----------|-----------|
| O1—C5   | 1.441 (3) | C8—H8A   | 0.9600    |
| O2—C7   | 1.356 (4) | C8—H8B   | 0.9600    |
| O2—C6   | 1.435 (4) | C8—H8C   | 0.9600    |
| O3—C7   | 1.201 (5) | C9—C10   | 1.500 (5) |
| O4—C9   | 1.369 (4) | C10—H10A | 0.9600    |
| O4—C4   | 1.441 (3) | C10—H10B | 0.9600    |
| О5—С9   | 1.184 (4) | C10—H10C | 0.9600    |
| O6—C11  | 1.356 (4) | C11—C12  | 1.494 (5) |
| O6—C3   | 1.441 (4) | C12—H12A | 0.9600    |
| O7—C11  | 1.189 (4) | C12—H12B | 0.9600    |
| O8—C13  | 1.347 (4) | C12—H12C | 0.9600    |
| O8—C2   | 1.435 (3) | C13—C14  | 1.484 (5) |
| O9—C13  | 1.185 (5) | C14—H14A | 0.9600    |
| O10—C15 | 1.372 (3) | C14—H14B | 0.9600    |
| O10-C1  | 1.411 (3) | C14—H14C | 0.9600    |
| O11—C21 | 1.188 (5) | C15—C16  | 1.387 (4) |
| C1—C2   | 1.529 (3) | C15—C20  | 1.391 (4) |
| С1—Н1   | 0.9800    | C16—C17  | 1.377 (4) |
| С2—С3   | 1.524 (4) | C16—H16  | 0.9300    |
| С2—Н2   | 0.9800    | C17—C18  | 1.382 (4) |
| C3—C4   | 1.519 (4) | C17—H17  | 0.9300    |
| С3—Н3   | 0.9800    | C18—C19  | 1.389 (4) |
| C4—C5   | 1.528 (3) | C18—C21  | 1.479 (4) |
| C4—H4   | 0.9800    | C19—C20  | 1.388 (4) |
| C5—C6   | 1.497 (4) | C19—H19  | 0.9300    |
| С5—Н5   | 0.9800    | C20—H20  | 0.9300    |
| С6—Н6А  | 0.9700    | C21—H21  | 0.9300    |
| С6—Н6В  | 0.9700    |          |           |

| C1—O1—C5   | 113.85 (19) | H8B—C8—H8C    | 109.5     |
|------------|-------------|---------------|-----------|
| C7—O2—C6   | 117.3 (3)   | 05—C9—O4      | 122.9 (3) |
| C9—O4—C4   | 115.1 (2)   | O5—C9—C10     | 126.4 (3) |
| C11—O6—C3  | 116.5 (2)   | O4—C9—C10     | 110.7 (3) |
| C13—O8—C2  | 117.4 (2)   | С9—С10—Н10А   | 109.5     |
| C15—O10—C1 | 118.5 (2)   | C9—C10—H10B   | 109.5     |
| O1—C1—O10  | 106.5 (2)   | H10A—C10—H10B | 109.5     |
| O1—C1—C2   | 109.2 (2)   | С9—С10—Н10С   | 109.5     |
| O10-C1-C2  | 105.9 (2)   | H10A-C10-H10C | 109.5     |
| O1—C1—H1   | 111.7       | H10B-C10-H10C | 109.5     |
| O10-C1-H1  | 111.7       | O7—C11—O6     | 124.5 (3) |
| С2—С1—Н1   | 111.7       | O7—C11—C12    | 125.8 (3) |
| O8—C2—C3   | 110.5 (2)   | O6-C11-C12    | 109.7 (3) |
| O8—C2—C1   | 107.0 (2)   | C11—C12—H12A  | 109.5     |
| C3—C2—C1   | 111.0 (2)   | C11—C12—H12B  | 109.5     |
| O8—C2—H2   | 109.4       | H12A—C12—H12B | 109.5     |
| С3—С2—Н2   | 109.4       | C11—C12—H12C  | 109.5     |
| С1—С2—Н2   | 109.4       | H12A—C12—H12C | 109.5     |
| O6—C3—C4   | 108.2 (2)   | H12B—C12—H12C | 109.5     |
| O6—C3—C2   | 107.6 (2)   | O9—C13—O8     | 121.5 (3) |
| C4—C3—C2   | 109.0 (2)   | O9—C13—C14    | 126.2 (3) |
| O6—C3—H3   | 110.7       | O8—C13—C14    | 112.2 (3) |
| С4—С3—Н3   | 110.7       | C13—C14—H14A  | 109.5     |
| С2—С3—Н3   | 110.7       | C13—C14—H14B  | 109.5     |
| O4—C4—C3   | 109.9 (2)   | H14A—C14—H14B | 109.5     |
| O4—C4—C5   | 108.1 (2)   | C13—C14—H14C  | 109.5     |
| C3—C4—C5   | 110.7 (2)   | H14A—C14—H14C | 109.5     |
| O4—C4—H4   | 109.3       | H14B-C14-H14C | 109.5     |
| C3—C4—H4   | 109.3       | O10-C15-C16   | 115.4 (2) |
| С5—С4—Н4   | 109.3       | O10-C15-C20   | 124.1 (2) |
| O1—C5—C6   | 108.0 (2)   | C16—C15—C20   | 120.5 (2) |
| O1—C5—C4   | 105.6 (2)   | C17—C16—C15   | 120.0 (3) |
| C6—C5—C4   | 115.9 (2)   | C17—C16—H16   | 120.0     |
| O1—C5—H5   | 109.0       | C15—C16—H16   | 120.0     |
| С6—С5—Н5   | 109.0       | C16—C17—C18   | 120.5 (3) |
| С4—С5—Н5   | 109.0       | C16—C17—H17   | 119.8     |
| O2—C6—C5   | 112.4 (2)   | С18—С17—Н17   | 119.8     |
| O2—C6—H6A  | 109.1       | C17—C18—C19   | 119.2 (3) |
| С5—С6—Н6А  | 109.1       | C17—C18—C21   | 122.7 (3) |
| O2—C6—H6B  | 109.1       | C19—C18—C21   | 118.0 (3) |
| С5—С6—Н6В  | 109.1       | C20-C19-C18   | 121.2 (3) |
| H6A—C6—H6B | 107.8       | С20—С19—Н19   | 119.4     |
| O3—C7—O2   | 122.4 (4)   | С18—С19—Н19   | 119.4     |
| 03—C7—C8   | 125.6 (4)   | C19—C20—C15   | 118.6 (3) |
| 02—C7—C8   | 111.9 (4)   | С19—С20—Н20   | 120.7     |
| С7—С8—Н8А  | 109.5       | C15—C20—H20   | 120.7     |
| C7—C8—H8B  | 109.5       | O11—C21—C18   | 125.6 (4) |
| H8A—C8—H8B | 109.5       | O11—C21—H21   | 117.2     |
| С7—С8—Н8С  | 109.5       | C18—C21—H21   | 117.2     |

| H8A—C8—H8C    | 109.5        |                 |            |
|---------------|--------------|-----------------|------------|
| C5-01-C1-010  | -177.44 (19) | C3—C4—C5—C6     | 179.7 (2)  |
| C5-01-C1-C2   | -63.6 (3)    | C7—O2—C6—C5     | 104.7 (3)  |
| C15-010-C1-01 | -76.9 (3)    | O1—C5—C6—O2     | -68.4 (3)  |
| C15—O10—C1—C2 | 167.0 (2)    | C4—C5—C6—O2     | 49.8 (3)   |
| C13—O8—C2—C3  | -101.7 (3)   | C6—O2—C7—O3     | -6.0 (5)   |
| C13—O8—C2—C1  | 137.3 (2)    | C6—O2—C7—C8     | 173.2 (3)  |
| O1—C1—C2—O8   | 175.1 (2)    | C4—O4—C9—O5     | 6.4 (5)    |
| O10—C1—C2—O8  | -70.7 (3)    | C4—O4—C9—C10    | -171.0 (3) |
| O1—C1—C2—C3   | 54.4 (3)     | C3—O6—C11—O7    | -4.2 (5)   |
| O10—C1—C2—C3  | 168.6 (2)    | C3—O6—C11—C12   | 176.3 (3)  |
| C11—O6—C3—C4  | -94.4 (3)    | C2-08-C13-09    | 2.7 (5)    |
| С11—О6—С3—С2  | 148.0 (2)    | C2              | -179.5 (3) |
| O8—C2—C3—O6   | -53.2 (3)    | C1-010-C15-C16  | -174.9 (2) |
| C1—C2—C3—O6   | 65.4 (3)     | C1-010-C15-C20  | 5.6 (4)    |
| O8—C2—C3—C4   | -170.2 (2)   | O10-C15-C16-C17 | 179.6 (2)  |
| C1—C2—C3—C4   | -51.7 (3)    | C20-C15-C16-C17 | -0.8 (4)   |
| C9—O4—C4—C3   | 78.4 (3)     | C15—C16—C17—C18 | -1.1 (4)   |
| C9—O4—C4—C5   | -160.6 (2)   | C16—C17—C18—C19 | 1.5 (4)    |
| O6—C3—C4—O4   | 58.7 (2)     | C16-C17-C18-C21 | -177.5 (3) |
| C2—C3—C4—O4   | 175.4 (2)    | C17—C18—C19—C20 | 0.0 (4)    |
| O6—C3—C4—C5   | -60.7 (3)    | C21-C18-C19-C20 | 179.1 (3)  |
| C2—C3—C4—C5   | 56.0 (3)     | C18—C19—C20—C15 | -1.9 (4)   |
| C1-01-C5-C6   | -169.3 (2)   | O10-C15-C20-C19 | -178.2 (3) |
| C1C5C4        | 66.1 (3)     | C16—C15—C20—C19 | 2.3 (4)    |
| O4—C4—C5—O1   | 178.8 (2)    | C17—C18—C21—O11 | -1.5 (5)   |
| C3—C4—C5—O1   | -60.7 (3)    | C19—C18—C21—O11 | 179.4 (3)  |
| O4—C4—C5—C6   | 59.3 (3)     |                 |            |



Fig. 1